کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4460365 1621330 2008 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Assimilation of remotely sensed data for improved latent and sensible heat flux prediction: A comparative synthetic study
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات کامپیوتر در علوم زمین
پیش نمایش صفحه اول مقاله
Assimilation of remotely sensed data for improved latent and sensible heat flux prediction: A comparative synthetic study
چکیده انگلیسی

Predicted latent and sensible heat fluxes from Land Surface Models (LSMs) are important lower boundary conditions for numerical weather prediction. While assimilation of remotely sensed surface soil moisture is a proven approach for improving root zone soil moisture, and presumably latent (LE) and sensible (H) heat flux predictions from LSMs, limitations in model physics and over-parameterisation mean that physically realistic soil moisture in LSMs will not necessarily achieve optimal heat flux predictions. Moreover, the potential for improved LE and H predictions from the assimilation of LE and H observations has received little attention by the scientific community, and is tested here with synthetic twin experiments. A one-dimensional single column LSM was used in 3-month long experiments, with observations of LE, H, surface soil moisture and skin temperature (from which LE and H are typically derived) sampled from truth model run outputs generated with realistic data inputs. Typical measurement errors were prescribed and observation data sets separately assimilated into a degraded model run using an Ensemble Kalman Filter (EnKF) algorithm, over temporal scales representative of available remotely sensed data. Root Mean Squared Error (RMSE) between assimilation and truth model outputs across the experiment period were examined to evaluate LE, H, and root zone soil moisture and temperature retrieval. Compared to surface soil moisture assimilation as will be available from SMOS (every 3 days), assimilation of LE and/or H using a best case MODIS scenario (twice daily) achieved overall better predictions for LE and comparable H predictions, while achieving poorer soil moisture predictions. Twice daily skin temperature assimilation achieved comparable heat flux predictions to LE and/or H assimilation. Fortnightly (Landsat) assimilations of LE, H and skin temperature performed worse than 3-day moisture assimilation. While the different spatial resolutions of these remote sensing data have been ignored, the potential for LE and H assimilation to improve model predicted LE and H is clearly demonstrated.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Remote Sensing of Environment - Volume 112, Issue 4, 15 April 2008, Pages 1295–1305
نویسندگان
, , ,