کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4465289 1621864 2009 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Margin-based feature selection for hyperspectral data
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات کامپیوتر در علوم زمین
پیش نمایش صفحه اول مقاله
Margin-based feature selection for hyperspectral data
چکیده انگلیسی

A margin-based feature selection approach is explored for hyperspectral data. This approach is based on measuring the confidence of a classifier when making predictions on a test data. Greedy feature flip and iterative search algorithms, which attempts to maximise the margin-based evaluation functions, were used in the present study. Evaluation functions use linear, zero–one and sigmoid utility functions where a utility function controls the contribution of each margin term to the overall score. The results obtained by margin-based feature selection technique were compared to a support vector machine-based recurring feature elimination approach. Two different hyperspectral data sets, one consisting of 65 bands (DAIS data) and other with 185 bands (AVIRIS data) were used. With digital airborne imaging spectrometer (DAIS) data, the classification accuracy by greedy feature flip algorithm and sigmoid utility function was 93.02% using a total of 24 selected features in comparison to an accuracy of 91.76% with full set of 65 features. The results suggest a significant increase in classification accuracy with 24 selected features. The classification accuracy (93.4%) achieved by the iterative search margin-based algorithm with 20 selected features using sigmoid utility function is also significantly more accurate than that achieved with 65 features. To judge the usefulness of margin-based feature selection approaches, another hyperspectral data set consisting of 185 features was used. A total of 65 selected features were used to evaluate the performance of margin-based feature selection approach. The results suggest a significantly improved performance by greedy feature flip-based feature selection technique with this data set also. This study also suggest that margin-based feature selection algorithms provide a comparable performance to support vector machine-based recurring feature elimination approach.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Applied Earth Observation and Geoinformation - Volume 11, Issue 3, June 2009, Pages 212–220
نویسندگان
,