کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
448064 693524 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Indoor positioning via nonlinear discriminative feature extraction in wireless local area network
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله
Indoor positioning via nonlinear discriminative feature extraction in wireless local area network
چکیده انگلیسی

The essential challenge in wireless local area network (WLAN) positioning system is the highly uncertainty and nonlinearity of received signal strength (RSS). These properties degrade the positioning accuracy drastically, as well as increasing the data collection cost. To address this challenge, we propose the nonlinear discriminative feature extraction of RSS using kernel direct discriminant analysis (KDDA). KDDA extracts location features in a kernel space, where the nonlinear RSS patterns are well characterized and captured. By performing KDDA, the discriminative information contained in RSS is reorganized and maximally extracted, while redundant features or noise are discarded adaptively. Furthermore, unlike previous monolithic models, we employ a location clustering step to localize the feature extraction. This step effectively avoids the suboptimality caused by variability of RSS over physical space. After feature extraction in each subregion, the relationship between extracted features and physical locations is established by support vector regression (SVR). Experimental results show that the proposed approach obtains higher accuracy while reducing the data collection cost significantly.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Communications - Volume 35, Issue 6, 15 March 2012, Pages 738–747
نویسندگان
, , ,