کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
449417 693669 2008 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A lightweight web server anomaly detection method based on transductive scheme and genetic algorithms
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله
A lightweight web server anomaly detection method based on transductive scheme and genetic algorithms
چکیده انگلیسی

World Wide Web (WWW) is one of the most popular applications currently running on the Internet and web server is a crucial component for this application. However, network anomalies especially Distributed Denial-of-Service (DDoS) attacks bombard web server, degrade its Quality of Service (QoS) and even deny the legitimate users’ requests. Traditional network anomaly detection methods often lead to high false positives and expensive computational cost, thus unqualified for real-time web server anomaly detection. To solve these problems, in this paper we first propose an efficient network anomaly detection method based on Transductive Confidence Machines for K-Nearest Neighbors (TCM-KNN) algorithm. Secondly, we integrate a lot of objective and efficient anomalies impact metrics from the perceptions of the end users into TCM-KNN algorithm to build a robust web sever anomaly detection mechanism. Finally, Genetic Algorithm (GA) based instance selection method is introduced to boost the real-time detection performance of our method. We evaluate our method on a series of experiments both on well-known KDD Cup 1999 dataset and concrete dataset collected from real network traffic. The results demonstrate our methods are actually effective and lightweight for real-time web server anomaly detection.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Communications - Volume 31, Issue 17, 20 November 2008, Pages 4018–4025
نویسندگان
, , , ,