کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4506142 | 1624345 | 2012 | 8 صفحه PDF | دانلود رایگان |

Over the past decade, Phelipanche ramosa, a weedy parasitic plant (broomrape), has been increasingly infesting winter oilseed rape (WOSR) fields in France. Elite WOSR lines have shown different responses in P. ramosa infested fields, suggesting that genetic variability might be available for breeding programmes targeting broomrape resistance. Ten WOSR genotypes selected for their contrasting response in field experiments were analysed using mini-rhizotron and greenhouse co-culture experiments to determine the components of resistance to broomrape. Partial resistance was revealed at three developmental stages of the parasitic plant. First, at the germination stage, parasite attachment to the roots of some WOSR lines was limited and associated with a low rate of parasite seed germination. This mechanism of parasite avoidance could nevertheless be suppressed under high infestation in mini-rhizotron and greenhouse conditions. Second, at the root attachment stage, limited parasite attachment was observed in mini-rhizotron conditions under low and high infestation, and in greenhouse conditions. Third, after successful parasite attachment, some WOSR genotypes retarded and even disturbed the growth of tubercles, minimising and delaying parasite emergence from the soil. Although the exact mechanisms limiting parasite attachment and tubercle development require further investigation, our findings suggest that, by cumulating various resistance traits in new genotypes to enhance effectiveness and potential durability of resistance, breeding could be a promising control strategy in WOSR.
► Branched broomrape is an expanding pest in European winter oilseed rape fields.
► Some WOSR genotypes exhibit a partial resistance to branched broomrape.
► Resistance mechanisms are activated at three different stages of the parasitic process.
► Resistance based on low germination stimulant production is not suitable for WOSR breeding.
Journal: Crop Protection - Volume 42, December 2012, Pages 56–63