کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
451671 694378 2015 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dynamic dual-reinforcement-learning routing strategies for quality of experience-aware wireless mesh networking
ترجمه فارسی عنوان
استراتژی های مسیریابی دینامیکی تقویت دوبعدی برای کیفیت شبکه های شبکه بی سیم با تجربه
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر شبکه های کامپیوتری و ارتباطات
چکیده انگلیسی

The impact of transmission impairments such as loss and latency on user perceived quality (QoE) depends on the service type. In a real network, multiple service types such as audio, video, and data coexist. This makes resource management inherently complex and difficult to orchestrate. In this paper, we propose an autonomous Quality of Experience management approach for multiservice wireless mesh networks, where individual mesh nodes apply reinforcement learning methods to dynamically adjust their routing strategies in order to maximize the user perceived QoE for each flow. Within the forwarding nodes, we develop a novel packet dropping strategy that takes into account the impact on QoE. Finally, a novel source rate adaptation mechanism is designed that takes into account the expected QoE in order to match the sending rate with the available network capacity. An evaluation of our mechanisms using simulations demonstrates that our approach is superior to the standard approaches, AODV and OLSR, and effectively balances the user perceived QoE between the service flows.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Networks - Volume 88, 9 September 2015, Pages 269–285
نویسندگان
, , , , , , ,