کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4525220 1625613 2016 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A non-hydrostatic pressure distribution solver for the nonlinear shallow water equations over irregular topography
ترجمه فارسی عنوان
حل کننده توزیع فشار غیر هیدرواستاتیک برای معادلات آبهای غیرخطی آب کم آب در توپوگرافی نامنظم
کلمات کلیدی
فشار دینامیکی آب های کم عمق، فرآیند پراکنده، حجم محدود، مرطوب و خشک کردن شبکه غیر ساختاری
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
چکیده انگلیسی
We extend a recently proposed 2D depth-integrated Finite Volume solver for the nonlinear shallow water equations with non-hydrostatic pressure distribution. The proposed model is aimed at simulating both nonlinear and dispersive shallow water processes. We split the total pressure into its hydrostatic and dynamic components and solve a hydrostatic problem and a non-hydrostatic problem sequentially, in the framework of a fractional time step procedure. The dispersive properties are achieved by incorporating the non-hydrostatic pressure component in the governing equations. The governing equations are the depth-integrated continuity equation and the depth-integrated momentum equations along the x, y and z directions. Unlike the previous non-hydrostatic shallow water solver, in the z momentum equation, we retain both the vertical local and convective acceleration terms. In the former solver, we keep only the local vertical acceleration term. In this paper, we investigate the effects of these convective terms and the possible improvements of the computed solution when these terms are not neglected in the governing equations, especially in strongly nonlinear processes. The presence of the convective terms in the vertical momentum equation leads to a numerical solution procedure, which is quite different from the one of the previous solver, in both the hydrostatic and dynamic steps. We discretize the spatial domain using unstructured triangular meshes satisfying the Generalized Delaunay property. The numerical solver is shock capturing and easily addresses wetting/drying problems, without any additional equation to solve at wet/dry interfaces. We present several numerical applications for challenging flooding processes encountered in practical aspects over irregular topography, including a new set of experiments carried out at the Hydraulics Laboratory of the University of Palermo.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Water Resources - Volume 98, December 2016, Pages 47-69
نویسندگان
, ,