کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4526501 | 1323841 | 2010 | 11 صفحه PDF | دانلود رایگان |

Quantification of rainfall and its spatial and temporal variability is extremely important for reliable hydrological and meteorological modeling. While rain gauge measurements do not provide reasonable areal representation of rainfall, remotely sensed precipitation estimates offer much higher spatial resolution. However, uncertainties associated with remotely sensed rainfall estimates are not well quantified. This issue is important considering the fact that uncertainties in input rainfall are the main sources of error in hydrologic processes. Using an ensemble of rainfall estimates that resembles multiple realizations of possible true rainfall, one can assess uncertainties associated with remotely sensed rainfall data. In this paper, ensembles are generated by imposing rainfall error fields over remotely sensed rainfall estimates. A non-Gaussian copula-based model is introduced for simulation of rainfall error fields. The v-transformed copula is employed to describe the dependence structure of rainfall error estimates without the influence of the marginal distribution. Simulations using this model can be performed unconditionally or conditioned on ground reference measurements such that rain gauge data are honored at their locations. The presented model is implemented for simulation of rainfall ensembles across the Little Washita watershed, Oklahoma. The results indicate that the model generates rainfall fields with similar spatio-temporal characteristics and stochastic properties to those of observed rainfall data.
Journal: Advances in Water Resources - Volume 33, Issue 6, June 2010, Pages 624–634