کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4551957 1627743 2016 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Data assimilation in a coupled physical-biogeochemical model of the California current system using an incremental lognormal 4-dimensional variational approach: Part 3—Assimilation in a realistic context using satellite and in situ observations
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علم هواشناسی
پیش نمایش صفحه اول مقاله
Data assimilation in a coupled physical-biogeochemical model of the California current system using an incremental lognormal 4-dimensional variational approach: Part 3—Assimilation in a realistic context using satellite and in situ observations
چکیده انگلیسی


• The coupled physical and biogeochemical data assimilation system successfully fits the coupled model to real observations in the year 2000.
• The root-mean-square error (RMSE) of chlorophyll was reduced approximately 40% by assimilating both physical and biological observations.
• The coupled data assimilation system also reduced the RMSEs of chlorophyll and nitrate when evaluated against the independent data sets.

A fully coupled physical and biogeochemical ocean data assimilation system is tested in a realistic configuration of the California Current System using the Regional Ocean Modeling System. In situ measurements for sea surface temperature and salinity as well as satellite observations for temperature, sea level and chlorophyll are used for the year 2000. Initial conditions of the combined physical and biogeochemical state are adjusted at the start of each 3-day assimilation cycle. Data assimilation results in substantial reduction of root-mean-square error (RMSE) over unconstrained model output. RMSE for physical variables is slightly lower when assimilating only physical variables than when assimilating both physical variables and surface chlorophyll. Surface chlorophyll RMSE is lowest when assimilating both physical variables and surface chlorophyll. Estimates of subsurface, nitrate and chlorophyll show modest improvements over the unconstrained model run relative to independent, unassimilated in situ data. Assimilation adjustments to the biogeochemical initial conditions are investigated within different regions of the California Current System. The incremental, lognormal 4-dimensional data assimilation method tested here represents a viable approach to coupled physical biogeochemical state estimation at practical computational cost.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ocean Modelling - Volume 106, October 2016, Pages 159–172
نویسندگان
, , , ,