کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4552021 1627761 2015 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Interactions between wind-blown snow redistribution and melt ponds in a coupled ocean–sea ice model
ترجمه فارسی عنوان
تعاملات بین توزیع برف و برف بادی و استخرهای ذوب شده در مدل اقیانوس مخروطی یخ دریا
کلمات کلیدی
برف، یخ دریایی، مخازن ذوب، مدل
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علم هواشناسی
چکیده انگلیسی


• Melt pond and blowing snow representations are included in a sea ice model.
• The simulation of the seasonal evolution of summer melt ponds is realistic overall.
• Two distinct melt pond regimes are identified, depending on the sea ice type.
• The impact of blowing snow on melt pond formation is significant on multi-year ice.
• The impact of blowing snow on melt pond formation is limited on first-year ice.

Introducing a parameterization of the interactions between wind-driven snow depth changes and melt pond evolution allows us to improve large scale models. In this paper we have implemented an explicit melt pond scheme and, for the first time, a wind dependant snow redistribution model and new snow thermophysics into a coupled ocean–sea ice model.The comparison of long-term mean statistics of melt pond fractions against observations demonstrates realistic melt pond cover on average over Arctic sea ice, but a clear underestimation of the pond coverage on the multi-year ice (MYI) of the western Arctic Ocean. The latter shortcoming originates from the concealing effect of persistent snow on forming ponds, impeding their growth. Analyzing a second simulation with intensified snow drift enables the identification of two distinct modes of sensitivity in the melt pond formation process. First, the larger proportion of wind-transported snow that is lost in leads directly curtails the late spring snow volume on sea ice and facilitates the early development of melt ponds on MYI. In contrast, a combination of higher air temperatures and thinner snow prior to the onset of melting sometimes make the snow cover switch to a regime where it melts entirely and rapidly. In the latter situation, seemingly more frequent on first-year ice (FYI), a smaller snow volume directly relates to a reduced melt pond cover.Notwithstanding, changes in snow and water accumulation on seasonal sea ice is naturally limited, which lessens the impacts of wind-blown snow redistribution on FYI, as compared to those on MYI. At the basin scale, the overall increased melt pond cover results in decreased ice volume via the ice-albedo feedback in summer, which is experienced almost exclusively by MYI.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ocean Modelling - Volume 87, March 2015, Pages 67–80
نویسندگان
, , , , ,