کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4552094 1627778 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modeling wave-mud interaction on the central chenier-plain coast, western Louisiana Shelf, USA
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علم هواشناسی
پیش نمایش صفحه اول مقاله
Modeling wave-mud interaction on the central chenier-plain coast, western Louisiana Shelf, USA
چکیده انگلیسی

The strong coupling between hydrodynamics and seafloors on shallow muddy shelves, and resulting bed reworking, have been extensively documented. On these shelves, spectral wave transformation is driven by a complex combination of forcing mechanisms that include nonlinear wave interactions and wave energy dissipation induced by fluid-mud at a range of frequencies. Wave-mud interaction is investigated herein by using a previously validated nonlinear spectral wave model and observations of waves and near-bed conditions on a mildly-sloping seafloor off the muddy central chenier-plain coast, western Louisiana Shelf, United States. Measurements were made along a cross-shelf transect spanning 1 km between 4 and 3 m water depths. The high-resolution observations of waves and near-bed conditions suggest presence of a fluid mud layer with thickness sometimes exceeding 10 cm under strong long wave action (1 meter wave height with 7 s peak period at 4 meter depth). Spectral wave transformation is modeled using the stochastic formulation of the nonlinear Mild Slope Equation, modified to account for wave-breaking and mud-induced dissipation. The model is used in an inverse manner in order to estimate the viscosity of the fluid mud layer, which is a key parameter controlling mud-induced wave dissipation but complicated to measure in the field during major wave events. Estimated kinematic viscosities vary between 10−4-10−3 m2/s. Combining these results of the wave model simulations with in-depth analysis of near-bed conditions and boundary layer modeling allows for a detailed investigation of the interaction of nonlinear wave propagation and mud characteristics. The results indicate that mud-induced dissipation is most efficient when the wave-induced resuspensions of concentrations  > 10 g/L settle due to relatively small bottom stresses to form a fluid mud layer that is not as thin and viscous as a consolidated seafloor in absence of wave action but also not as thick and soft as a near-bed high concentration layer that forms during strong wave action.


► Wave motion across a muddy bed, and bottom boundary layer are observed and modeled.
► Wave dissipation and bed state (stress, SSC) are coupled, and vary throughout a storm.
► Mud viscosity decreases due to strong waves, then increases with settling of resuspension.
► Wave dissipation reaches to its peak during the settling period after the storm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ocean Modelling - Volume 70, October 2013, Pages 75–84
نویسندگان
, , , ,