کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4582431 1333804 2012 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Probability of digits by dividing random numbers: A ψψ and ζζ functions approach
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Probability of digits by dividing random numbers: A ψψ and ζζ functions approach
چکیده انگلیسی

This paper begins with the statistics of the decimal digits of n/dn/d with (n,d)∈N2(n,d)∈N2 randomly chosen. Starting with a statement by Cesàro on probabilistic number theory, see Cesàro (1885) [3] and [4], we evaluate, through the Euler ψψ function, an integral appearing there. Furthermore the probabilistic statement itself is proved, using a different approach: in any case the probability of a given digit rr to be the first decimal digit after dividing a couple of random integers is pr=120+12{ψ(r10+1110)−ψ(r10+1)}. The theorem is then generalized to real numbers (Theorem 1, holding a proof of both nd results) and to the ααth power of the ratio of integers (Theorem 2), via an elementary approach involving the ψψ function and the Hurwitz ζζ function. The article provides historic remarks, numerical examples, and original theoretical contributions: also it complements the recent renewed interest in Benford’s law among number theorists.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expositiones Mathematicae - Volume 30, Issue 3, 2012, Pages 223–238
نویسندگان
, , ,