کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4593184 1630645 2016 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On shifted Mascheroni series and hyperharmonic numbers
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On shifted Mascheroni series and hyperharmonic numbers
چکیده انگلیسی

TextIn this article, we study the nature of the forward shifted series σr=∑n>r|bn|n−r where r   is a positive integer and bnbn are Bernoulli numbers of the second kind, expressing them in terms of the derivatives ζ′(−k)ζ′(−k) of zeta at the negative integers and Euler's constant γ  . These expressions may be inverted to produce new series expansions for the quotient ζ(2k+1)/ζ(2k)ζ(2k+1)/ζ(2k). Motivated by a theoretical interpretation of these series in terms of Ramanujan summation, we give an explicit formula for the Ramanujan sum of hyperharmonic numbers as an application of our results.VideoFor a video summary of this paper, please visit https://youtu.be/uyLmgDh9JVs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 169, December 2016, Pages 1–20
نویسندگان
, ,