کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4593274 | 1630648 | 2016 | 11 صفحه PDF | دانلود رایگان |

• For any pair of integers m and n , define Km,n:={a2+mab+nb2|a,b∈Z}Km,n:={a2+mab+nb2|a,b∈Z}.
• Km,nKm,n is a semi-group with usual product of integers, for any pair of integers m and n.
• A prime number p can be expressed as p=a2±ab−b2p=a2±ab−b2 with integers a and b, if and only if, p is congruent to 0, 1 and −1 modulo 5.
• A prime number p can be expressed as p=a2±ab+b2p=a2±ab+b2 with integers a and b, if and only if, p is congruent to 0 and 1 modulo 3.
Let p be a prime number. In this paper we show that p can be expressed as p=a2±ab−b2p=a2±ab−b2 with integers a and b if and only if p is congruent to 0, 1 or −1 (mod5) and p can be expressed as p=a2±ab+b2p=a2±ab+b2 with integers a and b if and only if p is congruent to 0, 1 (mod3).
Journal: Journal of Number Theory - Volume 166, September 2016, Pages 208–218