کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4593446 1630655 2016 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On primitive integer solutions of the Diophantine equation t2=G(x,y,z)t2=G(x,y,z) and related results
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On primitive integer solutions of the Diophantine equation t2=G(x,y,z)t2=G(x,y,z) and related results
چکیده انگلیسی

In this paper we investigate Diophantine equations of the form T2=G(X‾), X‾=(X1,…,Xm), where m=3m=3 or m=4m=4 and G   is a specific homogeneous quintic form. First, we prove that if F(x,y,z)=x2+y2+az2+bxy+cyz+dxz∈Z[x,y,z]F(x,y,z)=x2+y2+az2+bxy+cyz+dxz∈Z[x,y,z] and (b−2,4a−d2,d)≠(0,0,0)(b−2,4a−d2,d)≠(0,0,0), then for all n∈Z∖{0}n∈Z∖{0} the Diophantine equation t2=nxyzF(x,y,z)t2=nxyzF(x,y,z) has a solution in polynomials x, y, z, t   with integer coefficients, with no polynomial common factor of positive degree. In case a=d=0a=d=0, b=2b=2 we prove that there are infinitely many primitive integer solutions of the Diophantine equation under consideration. As an application of our result we prove that for each n∈Q∖{0}n∈Q∖{0} the Diophantine equationT2=n(X15+X25+X35+X45) has a solution in co-prime (non-homogeneous) polynomials in two variables with integer coefficients. We also present a method which sometimes allows us to prove the existence of primitive integer solutions of more general quintic Diophantine equation of the form T2=aX15+bX25+cX35+dX45, where a,b,c,d∈Za,b,c,d∈Z. In particular, we prove that for each m,n∈Z∖{0}m,n∈Z∖{0}, the Diophantine equationT2=m(X15−X25)+n2(X35−X45) has a solution in polynomials which are co-prime over Z[t]Z[t]. Moreover, we show how a modification of the presented method can be used in order to prove that for each n∈Q∖{0}n∈Q∖{0}, the Diophantine equationt2=n(X15+X25−2X35) has a solution in polynomials which are co-prime over Z[t]Z[t].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 159, February 2016, Pages 101–122
نویسندگان
, ,