| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 4593540 | 1630656 | 2016 | 24 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												On the p-rank of tame kernel of number fields 
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													اعداد جبر و تئوری 
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												In this paper, the relations between p-ranks of the tame kernel and the ideal class group for a general number field are investigated. As a result, nearly all of Browkin's results about quadratic fields are generalized to those for general number fields. In particular, a p-rank formula between the tame kernel and the ideal class group for a totally real number field of odd degree is obtained when p is a Fermat prime. As an example, the case of cyclic quartic fields is considered in more details. More precisely, using the results on cyclic quartic fields, we give some results connecting the p-rank(K2OF)p-rank(K2OF) with the p-rank(Cl(OE))p-rank(Cl(OE)), where F is a cyclic quartic field and E is an appropriate subfield of F(ζp)F(ζp).
ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 158, January 2016, Pages 244–267
											Journal: Journal of Number Theory - Volume 158, January 2016, Pages 244–267
نویسندگان
												Chaochao Sun, Kejian Xu,