کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4593577 | 1630659 | 2015 | 39 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Connected components of Hurwitz schemes and Malle's conjecture
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let Z(X) be the number of degree-n extensions of Fq(t) with some specified Galois group and with discriminant bounded by X. The problem of computing the asymptotics for Z(X) can be related to a problem of counting Fq-rational points on certain Hurwitz spaces. Ellenberg and Venkatesh used this idea to develop a heuristic for the asymptotic behavior of Z0(X), the number of - geometrically connected - extensions, and showed that this agrees with the conjectures of Malle for function fields. We extend Ellenberg-Venkatesh's argument to handle the more complicated case of covers of P1 which may not be geometrically connected, and show that the resulting heuristic suggests a natural modification to Malle's conjecture which avoids the counterexamples, due to Klüners, to the original conjecture.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 155, October 2015, Pages 163-201
Journal: Journal of Number Theory - Volume 155, October 2015, Pages 163-201
نویسندگان
Seyfi Türkelli,