کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4593803 1630670 2014 44 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A generalization of Darmon's conjecture for Euler systems for general p-adic representations
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
A generalization of Darmon's conjecture for Euler systems for general p-adic representations
چکیده انگلیسی

Darmon's conjecture on a relation between cyclotomic units over real quadratic fields and certain algebraic regulators was recently solved by Mazur and Rubin by using their theory of Kolyvagin systems. In this paper, we formulate a “non-explicit” version of Darmon's conjecture for Euler systems defined for general p-adic representations, and prove it. In the process of the proof, we introduce a notion of “algebraic Kolyvagin systems”, and develop their properties.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 144, November 2014, Pages 281–324
نویسندگان
,