کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4593946 1630673 2014 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cycle integrals of a sesqui-harmonic Maass form of weight zero
ترجمه فارسی عنوان
انتگرال های چرخه ای از یک فرم وزن خوارسکی-هارمونیک وزن از صفر است؟
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی

Borcherds–Zagier bases of the spaces of weakly holomorphic modular forms of weights 1/2 and 3/2 share the Fourier coefficients which are traces of singular moduli. Recently, Duke, Imamoḡlu, and Tóth have constructed a basis of the space of weight 1/2 mock modular forms, each member in which has Zagier's generating series of traces of singular moduli as its shadow. They also showed that Fourier coefficients of their mock modular forms are sums of cycle integrals of the j-function which are real quadratic analogues of singular moduli. In this paper, we prove that the Fourier coefficients of a basis of the space of weight 3/2 mock modular forms are sums of cycle integrals of a sesqui-harmonic Maass form of weight zero whose image under hyperbolic Laplacian is the j-function. Furthermore, we express these sums as regularized inner products of weakly holomorphic modular forms of weight 1/2.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 141, August 2014, Pages 92–108
نویسندگان
, , ,