کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4593997 1335736 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the number of partitions with designated summands
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On the number of partitions with designated summands
چکیده انگلیسی
Andrews, Lewis and Lovejoy introduced the partition function PD(n) as the number of partitions of n with designated summands, where we assume that among parts with equal size, exactly one is designated. They proved that PD(3n+2) is divisible by 3 and showed that the generating function of PD(3n) can be expressed as an infinite product of powers of (1−q2n+1) times a function F(q2). We obtain a Ramanujan type identity which implies the congruence for PD(3n+2). We also find an explicit formula for F(q2), which leads to a formula for the generating function of PD(3n). A formula for the generating function of PD(3n+1) is also obtained. Our proofs rely on Chanʼs identity on Ramanujanʼs cubic continued fraction and identities on cubic theta functions. By introducing a rank for partitions with designated summands, we give a combinatorial interpretation of the congruence for PD(3n+2).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 133, Issue 9, September 2013, Pages 2929-2938
نویسندگان
, , , ,