کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4593997 | 1335736 | 2013 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the number of partitions with designated summands
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Andrews, Lewis and Lovejoy introduced the partition function PD(n) as the number of partitions of n with designated summands, where we assume that among parts with equal size, exactly one is designated. They proved that PD(3n+2) is divisible by 3 and showed that the generating function of PD(3n) can be expressed as an infinite product of powers of (1âq2n+1) times a function F(q2). We obtain a Ramanujan type identity which implies the congruence for PD(3n+2). We also find an explicit formula for F(q2), which leads to a formula for the generating function of PD(3n). A formula for the generating function of PD(3n+1) is also obtained. Our proofs rely on Chanʼs identity on Ramanujanʼs cubic continued fraction and identities on cubic theta functions. By introducing a rank for partitions with designated summands, we give a combinatorial interpretation of the congruence for PD(3n+2).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 133, Issue 9, September 2013, Pages 2929-2938
Journal: Journal of Number Theory - Volume 133, Issue 9, September 2013, Pages 2929-2938
نویسندگان
William Y.C. Chen, Kathy Q. Ji, Hai-Tao Jin, Erin Y.Y. Shen,