کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4594164 1335743 2013 38 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The distribution of weighted sums of the Liouville function and Pólyaʼs conjecture
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
The distribution of weighted sums of the Liouville function and Pólyaʼs conjecture
چکیده انگلیسی

Under the assumption of the Riemann hypothesis, the Linear Independence hypothesis, and a bound on negative discrete moments of the Riemann zeta function, we prove the existence of a limiting logarithmic distribution of the normalisation of the weighted sum of the Liouville function, Lα(x)=∑n⩽xλ(n)/nα, for 0⩽α<1/2. Using this, we conditionally show that these weighted sums have a negative bias, but that for each 0⩽α<1/2, the set of all x⩾1 for which Lα(x) is positive has positive logarithmic density. For α=0, this gives a conditional proof that the set of counterexamples to Pólyaʼs conjecture has positive logarithmic density. Finally, when α=1/2, we conditionally prove that Lα(x) is negative outside a set of logarithmic density zero, thereby lending support to a conjecture of Mossinghoff and Trudgian that this weighted sum is nonpositive for all x⩾17.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 133, Issue 2, February 2013, Pages 545-582