کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4594296 1335751 2012 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the quasi-group of a cubic surface over a finite field
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On the quasi-group of a cubic surface over a finite field
چکیده انگلیسی

We study the Mordell–Weil group MW(V) for cubic surfaces V over finite fields that are not necessarily irreducible and smooth. We construct a surjective map from MW(V) to a group that can be computed explicitly. For #MW(V), this yields a lower bound, which is (often but) not always trivial. To distinguish cases, we follow the classification of cubic surfaces, originally due to Schläfli and Cayley. On the other hand, we describe an algorithm that a priori gives an upper bound for MW(V). We report on our experiments for “randomly” chosen surfaces of the various types, showing that in all but one case lower and upper bounds agree. Finally, we give two applications to the number field case. First, we prove that the number of generators of MW(V) is unbounded. A second application explains why, for many reduction types, the Brauer–Manin obstruction may not distinguish points reducing to the smooth part.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 132, Issue 7, July 2012, Pages 1554-1571