کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4594402 1335758 2012 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The average least quadratic nonresidue modulo m and other variations on a theme of Erdős
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
The average least quadratic nonresidue modulo m and other variations on a theme of Erdős
چکیده انگلیسی

For each m⩾3, let n2(m) denote the least quadratic nonresidue modulo m. In 1961, Erdős determined the mean value of n2(p), as p runs over the odd primes. We show that the mean value of n2(m), without the restriction to prime values, is . For each prime p, let G(p) denote the least natural number n so that the subgroup generated by {1,2,…,n} is all of ×(Z/pZ). Assuming the Generalized Riemann Hypothesis, we show that G(p) possesses a finite mean value ≈3.975. For K a quadratic extension of Q, let nK denote the smallest rational prime which is inert in K and rK the least prime which is split in K. We show that with quadratic fields ordered by the absolute value of their discriminant, rK and nK have the same mean value, which is ≈4.981.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 132, Issue 6, June 2012, Pages 1185-1202