کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4594442 1335760 2012 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Linear forms at a basis of an algebraic number field
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Linear forms at a basis of an algebraic number field
چکیده انگلیسی

It was proved by Cassels and Swinnerton-Dyer that the Littlewood conjecture in simultaneous Diophantine approximation holds for any pair of numbers in a cubic field. Later this result was generalized by Peck to a basis (1,α1,…,αn) of a real algebraic number field of degree at least 3. By transference, this result provides some solutions for the dual form of Littlewoodʼs conjecture. Here we find another solutions, and using Bakerʼs estimates for linear forms in logarithms of algebraic numbers, we discuss whether the result is best possible.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 132, Issue 1, January 2012, Pages 1-25