کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4594455 | 1335760 | 2012 | 54 صفحه PDF | دانلود رایگان |

We give a general arithmetic dimension formula for spaces of vector-valued Siegel cusp forms of degree two. Then, using this formula, we derive explicit dimension formulas for arithmetic subgroups of any level for each Q-form of Sp(2;R). Tsushima has already given the dimension formulas for some congruence subgroups of the split Q-form in Tsushima (1983, 1997) [32,33]. We obtain an alternative proof for his results by using the Selberg trace formula and the theory of prehomogeneous vector spaces. As for the non-split Q-forms, our results are new. We generalize the results and proofs given in Arakawa (1981) [1], , Christian (1969, 1975, 1977) [5,6], Hashimoto (1983, 1984) [12,13], Morita (1974) [25] for the scalar-valued case to the vector-valued case using the Selberg trace formula.
Journal: Journal of Number Theory - Volume 132, Issue 1, January 2012, Pages 200-253