کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4594458 1335760 2012 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Norms extremal with respect to the Mahler measure
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Norms extremal with respect to the Mahler measure
چکیده انگلیسی

In this paper, we introduce and study several norms which are constructed in order to satisfy an extremal property with respect to the Mahler measure. These norms are a natural generalization of the metric Mahler measure introduced by Dubickas and Smyth. We show that bounding these norms on a certain subspace implies Lehmerʼs conjecture and in at least one case that the converse is true as well. We evaluate these norms on a class of algebraic numbers that include Pisot and Salem numbers, and for surds. We prove that the infimum in the construction is achieved in a certain finite dimensional space for all algebraic numbers in one case, and for surds in general, a finiteness result analogous to that of Samuels and Jankauskas for the t-metric Mahler measures.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 132, Issue 1, January 2012, Pages 275-300