کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4594528 | 1335765 | 2011 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the Erdős–Ginzburg–Ziv constant of finite abelian groups of high rank
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let G be a finite abelian group. The Erdős–Ginzburg–Ziv constant s(G) of G is defined as the smallest integer l∈N such that every sequence S over G of length |S|⩾l has a zero-sum subsequence T of length |T|=exp(G). If G has rank at most two, then the precise value of s(G) is known (for cyclic groups this is the theorem of Erdős–Ginzburg–Ziv). Only very little is known for groups of higher rank. In the present paper, we focus on groups of the form , with n,r∈N and n⩾2, and we tackle the study of s(G) with a new approach, combining the direct problem with the associated inverse problem.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 131, Issue 10, October 2011, Pages 1864-1874
Journal: Journal of Number Theory - Volume 131, Issue 10, October 2011, Pages 1864-1874