کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4594608 | 1335772 | 2010 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Symmetric square L-values and dihedral congruences for cusp forms
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let be a prime, and k=(p+1)/2. In this paper we prove that two things happen if and only if the class number . One is the non-integrality at p of a certain trace of normalised critical values of symmetric square L-functions, of cuspidal Hecke eigenforms of level one and weight k. The other is the existence of such a form g whose Hecke eigenvalues satisfy “dihedral” congruences modulo a divisor of p (e.g. p=23, k=12, g=Δ). We use the Bloch–Kato conjecture to link these two phenomena, using the Galois interpretation of the congruences to produce global torsion elements which contribute to the denominator of the conjectural formula for an L-value. When , the trace turns out always to be a p-adic unit.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 130, Issue 9, September 2010, Pages 2078-2091
Journal: Journal of Number Theory - Volume 130, Issue 9, September 2010, Pages 2078-2091