کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4594649 1335775 2010 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Steinitz classes of tamely ramified Galois extensions of algebraic number fields
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Steinitz classes of tamely ramified Galois extensions of algebraic number fields
چکیده انگلیسی

The Steinitz class of a number field extension K/k is an ideal class in the ring of integers Ok of k, which, together with the degree [K:k] of the extension determines the Ok-module structure of OK. We call Rt(k,G) the set of classes which are Steinitz classes of a tamely ramified G-extension of k. We will say that those classes are realizable for the group G; it is conjectured that the set of realizable classes is always a group. We define A′-groups inductively, starting with abelian groups and then considering semidirect products of A′-groups with abelian groups of relatively prime order and direct products of two A′-groups. Our main result is that the conjecture about realizable Steinitz classes for tame extensions is true for A′-groups of odd order; this covers many cases not previously known. Further we use the same techniques to determine Rt(k,Dn) for any odd integer n. In contrast with many other papers on the subject, we systematically use class field theory (instead of Kummer theory and cyclotomic descent).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 130, Issue 5, May 2010, Pages 1129-1154