کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4594676 1335776 2010 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Arithmetic equivalence for function fields, the Goss zeta function and a generalisation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Arithmetic equivalence for function fields, the Goss zeta function and a generalisation
چکیده انگلیسی

A theorem of Tate and Turner says that global function fields have the same zeta function if and only if the Jacobians of the corresponding curves are isogenous. In this note, we investigate what happens if we replace the usual (characteristic zero) zeta function by the positive characteristic zeta function introduced by Goss. We prove that for function fields whose characteristic exceeds their degree, equality of the Goss zeta function is the same as Gaßmann equivalence (a purely group theoretical property), but this statement can fail if the degree exceeds the characteristic. We introduce a ‘Teichmüller lift’ of the Goss zeta function and show that equality of such is always the same as Gaßmann equivalence.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 130, Issue 4, April 2010, Pages 1000-1012