کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4594710 1335778 2009 33 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Rational separability of the integral closure
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Rational separability of the integral closure
چکیده انگلیسی

We investigate the following question. Let K be a global field, i.e. a number field or an algebraic function field of one variable over a finite field of constants. Let WK be a set of primes of K, possibly infinite, such that in some fixed finite separable extension L of K, all the primes of WK do not have factors of relative degree 1. Let M be a finite extension of K and let WM be the set of all the M-primes above the primes of WK. Then does WM have the same property? The answer is “always” for one variable algebraic function fields over finite fields of constants and “not always” for number fields. In this paper we give a complete description of the conditions under which WM inherits and does not inherit the above described property.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 129, Issue 10, October 2009, Pages 2227-2259