کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4594714 1335778 2009 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the Ono invariants of imaginary quadratic number fields
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On the Ono invariants of imaginary quadratic number fields
چکیده انگلیسی

J. Cohen, J. Sonn, F. Sairaiji and K. Shimizu proved that there are only finitely many imaginary quadratic number fields K whose Ono invariants OnoK are equal to their class numbers hK. Assuming a Restricted Riemann Hypothesis, namely that the Dedekind zeta functions of imaginary quadratic number fields K have no Siegel zeros, we determine all these K's. There are 114 such K's. We also prove that we are missing at most one such K. M. Ishibashi proved that if OnoK is large enough compared with hK, then the ideal class groups of K is cyclic. We give a short proof and a precision of Ishibashi's result. We prove that there are only finitely many imaginary quadratic number fields K satisfying Ishibashi's sufficient condition. Assuming our Restricted Riemann Hypothesis, we prove that the absolute values dK of their discriminants are less than 2.3⋅109. We determine all these K's with dK⩽106. There are 76 such K's. We prove that there is at most one such K with dK⩾1.8⋅1011.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 129, Issue 10, October 2009, Pages 2289-2294