کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4594771 1335781 2010 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Split orders and convex polytopes in buildings
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Split orders and convex polytopes in buildings
چکیده انگلیسی

As part of his work to develop an explicit trace formula for Hecke operators on congruence subgroups of SL2(Z), Hijikata (1974) [13] defines and characterizes the notion of a split order in M2(k), where k is a local field. In this paper, we generalize the notion of a split order to Mn(k) for n>2 and give a natural geometric characterization in terms of the affine building for SLn(k). In particular, we show that there is a one-to-one correspondence between split orders in Mn(k) and a collection of convex polytopes in apartments of the building such that the split order is the intersection of all the maximal orders representing the vertices in the polytope. This generalizes the geometric interpretation in the n=2 case in which split orders correspond to geodesics in the tree for SL2(k) with the split order given as the intersection of the endpoints of the geodesic.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 130, Issue 1, January 2010, Pages 101-115