کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4594773 1335781 2010 36 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the vanishing of Selmer groups for elliptic curves over ring class fields
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On the vanishing of Selmer groups for elliptic curves over ring class fields
چکیده انگلیسی

Let E/Q be an elliptic curve of conductor N without complex multiplication and let K be an imaginary quadratic field of discriminant D prime to N. Assume that the number of primes dividing N and inert in K is odd, and let Hc be the ring class field of K of conductor c prime to ND with Galois group Gc over K. Fix a complex character χ of Gc. Our main result is that if LK(E,χ,1)≠0 then Selp(E/Hc)⊗χW=0 for all but finitely many primes p, where Selp(E/Hc) is the p-Selmer group of E over Hc and W is a suitable finite extension of Zp containing the values of χ. Our work extends results of Bertolini and Darmon to almost all non-ordinary primes p and also offers alternative proofs of a χ-twisted version of the Birch and Swinnerton-Dyer conjecture for E over Hc (Bertolini and Darmon) and of the vanishing of Selp(E/K) for almost all p (Kolyvagin) in the case of analytic rank zero.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 130, Issue 1, January 2010, Pages 128-163