کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4594773 | 1335781 | 2010 | 36 صفحه PDF | دانلود رایگان |

Let E/Q be an elliptic curve of conductor N without complex multiplication and let K be an imaginary quadratic field of discriminant D prime to N. Assume that the number of primes dividing N and inert in K is odd, and let Hc be the ring class field of K of conductor c prime to ND with Galois group Gc over K. Fix a complex character χ of Gc. Our main result is that if LK(E,χ,1)≠0 then Selp(E/Hc)⊗χW=0 for all but finitely many primes p, where Selp(E/Hc) is the p-Selmer group of E over Hc and W is a suitable finite extension of Zp containing the values of χ. Our work extends results of Bertolini and Darmon to almost all non-ordinary primes p and also offers alternative proofs of a χ-twisted version of the Birch and Swinnerton-Dyer conjecture for E over Hc (Bertolini and Darmon) and of the vanishing of Selp(E/K) for almost all p (Kolyvagin) in the case of analytic rank zero.
Journal: Journal of Number Theory - Volume 130, Issue 1, January 2010, Pages 128-163