کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4594887 1335787 2009 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Explicit Heegner points: Kolyvagin's conjecture and non-trivial elements in the Shafarevich–Tate group
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Explicit Heegner points: Kolyvagin's conjecture and non-trivial elements in the Shafarevich–Tate group
چکیده انگلیسی

Kolyvagin used Heegner points to associate a system of cohomology classes to an elliptic curve over QQ and conjectured that the system contains a non-trivial class. His conjecture has profound implications on the structure of Selmer groups. We provide new computational and theoretical evidence for Kolyvagin's conjecture. More precisely, we explicitly approximate Heegner points over ring class fields and use these points to give evidence for the conjecture for specific elliptic curves of rank two. We explain how Kolyvagin's conjecture implies that if the analytic rank of an elliptic curve is at least two then the ZpZp-corank of the corresponding Selmer group is at least two as well. We also use explicitly computed Heegner points to produce non-trivial classes in the Shafarevich–Tate group.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 129, Issue 2, February 2009, Pages 284–302
نویسندگان
, , ,