کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4594941 1335790 2009 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Galois structure and de Rham invariants of elliptic curves
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Galois structure and de Rham invariants of elliptic curves
چکیده انگلیسی

Let K be a number field with ring of integers OK. Suppose a finite group G acts numerically tamely on a regular scheme X over OK. One can then define a de Rham invariant class in the class group Cl(OK[G]), which is a refined Euler characteristic of the de Rham complex of X. Our results concern the classification of numerically tame actions and the de Rham invariant classes. We first describe how all Galois étale G-covers of a K-variety may be built up from finite Galois extensions of K and from geometric covers. When X is a curve of positive genus, we show that a given étale action of G on X extends to a numerically tame action on a regular model if and only if this is possible on the minimal model. Finally, we characterize the classes in Cl(OK[G]) which are realizable as the de Rham invariants for minimal models of elliptic curves when G has prime order.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 129, Issue 1, January 2009, Pages 1-14