کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4595010 1335793 2008 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On realizable Galois module classes and Steinitz classes of nonabelian extensions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On realizable Galois module classes and Steinitz classes of nonabelian extensions
چکیده انگلیسی

Let k be a number field and Ok its ring of integers. Let Γ be a finite group, N/k a Galois extension with Galois group isomorphic to Γ, and ON the ring of integers of N. Let M be a maximal Ok-order in the semisimple algebra k[Γ] containing Ok[Γ], and Cl(M) its locally free class group. When N/k is tame (i.e., at most tamely ramified), extension of scalars allows us to assign to ON the class of M⊗Ok[Γ]ON, denoted [M⊗Ok[Γ]ON], in Cl(M). We define the set R(M) of realizable classes to be the set of classes c∈Cl(M) such that there exists a Galois extension N/k which is tame, with Galois group isomorphic to Γ, and for which [M⊗Ok[Γ]ON]=c. Let p be an odd prime number and let ξp be a primitive pth root of unity. In the present article, we prove, by means of a fairly explicit description, that R(M) is a subgroup of Cl(M) when ξp∈k and Γ=V⋊ρC, where V is an Fp-vector space of dimension r⩾1, C a cyclic group of order pr−1, and ρ a faithful representation of C in V; an example is the symmetric group S3. In the proof, we use some properties of a cyclic code and solve an embedding problem connected with Steinitz classes. In addition, we determine the set of Steinitz classes of tame Galois extensions of k, with the above group as Galois group, and prove that it is a subgroup of the class group of k.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 128, Issue 4, April 2008, Pages 954-978