کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4595052 1335795 2008 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On ring class eigenspaces of Mordell–Weil groups of elliptic curves over global function fields
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On ring class eigenspaces of Mordell–Weil groups of elliptic curves over global function fields
چکیده انگلیسی

If E is a non-isotrivial elliptic curve over a global function field F of odd characteristic we show that certain Mordell–Weil groups of E have 1-dimensional χ-eigenspace (with χ a complex ring class character) provided that the projection onto this eigenspace of a suitable Drinfeld–Heegner point is non-zero. This represents the analogue in the function field setting of a theorem for elliptic curves over Q due to Bertolini and Darmon, and at the same time is a generalization of the main result proved by Brown in his monograph on Heegner modules. As in the number field case, our proof employs Kolyvagin-type arguments, and the cohomological machinery is started up by the control on the Galois structure of the torsion of E provided by classical results of Igusa in positive characteristic.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 128, Issue 7, July 2008, Pages 2159-2184