کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4595064 | 1335796 | 2008 | 9 صفحه PDF | دانلود رایگان |

Let A be a quaternion algebra over a number field k and assume that A satisfies the Eichler condition so that some infinite place of k is unramified in A. Let L be a quadratic extension of k which embeds in A. Let Rk denote the ring of integers of k and let B be an Rk-order in L. Suppose that E is an Eichler order of A of square-free level S. In this paper, we determine when there exists an embedding σ:L→A over k which gives an optimal embedding of B into E in the sense that σ(L)∩E=σ(B). This generalises previous work of Eichler [M. Eichler, Zur Zahlentheorie der Quaternionenalgebren, J. Reine Angew. Math. 195 (1955) 127–155] and Chinburg and Friedman [T. Chinburg, E. Friedman, An embedding theorem for quaternion algebras, J. London Math. Soc. 60 (1999) 33–44].
Journal: Journal of Number Theory - Volume 128, Issue 10, October 2008, Pages 2852-2860