کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4595072 | 1335797 | 2009 | 28 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the classification of integers n that divide Ï(n)+Ï(n)
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The expressions Ï(n)+Ï(n)â3n and Ï(n)+Ï(n)â4n are unusual among linear combinations of arithmetic functions in that they each vanish on a nonempty set of composite numbers. In 1966, Nicol proved that the set A:={n|(Ï(n)+Ï(n))/nâN⩾3} contains 2aâ
3â
(2aâ2â
7â1) if and only if 2aâ2â
7â1 is prime and conjectured that A contains no odd integers. A 2008 paper by Luca and Sandor completely classifies the elements of A that have three distinct prime factors and observes that Nicol's conjecture holds for numbers with fewer than six distinct prime factors. In this paper we let AK denote the set of nâA with exactly K distinct prime factors and present a computer-implementable algorithm that decides whether Nicol's conjecture holds for a given AK. Using this algorithm, we verify Nicol's conjecture for A6 and completely classify the elements of A4. We prove that all but finitely many nâA4 have the form 2aâ
3â
p3â
p4, and that all but finitely many nâA5 are divisible by 6 and not 9. In addition, we prove that every AK is contained in a finite union of sequences that each have the form {p1a1iâ¯pkakiâ
uâ
wi}i=1â, where k⩾1, p1,â¦,pk are distinct primes, and each aji as well as the least prime factor of wi go to infinity as i does.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 129, Issue 9, September 2009, Pages 2093-2110.e10
Journal: Journal of Number Theory - Volume 129, Issue 9, September 2009, Pages 2093-2110.e10
نویسندگان
Kelley Harris,