کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4595094 1335798 2007 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Positive definite binary hermitian forms with finitely many exceptions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Positive definite binary hermitian forms with finitely many exceptions
چکیده انگلیسی

Let E/F be a CM extension of number fields, and L be a positive definite binary hermitian lattice over the ring of integers of E. An element in F is called an exception of L if it is represented by every localization of L but not by L itself. We show that if E/F and a positive integer k are given, then there are only finitely many similarity classes of positive definite binary hermitian lattices with at most k exceptions. This generalizes the corresponding finiteness result by Earnest and Khosravani [A.G. Earnest, A. Khosravani, Representation of integers by positive definite binary hermitian lattices over imaginary quadratic fields, J. Number Theory 62 (1997) 368–374, Theorem 2.2] for the case F=Q. We also prove that for a fixed totally real field F of odd degree over Q, there are only finitely many CM extensions E/F for which there exists a positive definite regular normal binary hermitian lattice over the ring of integers of E.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 124, Issue 1, May 2007, Pages 167-180