کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4595162 1335801 2008 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Mahler measure of parametrizable polynomials
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
The Mahler measure of parametrizable polynomials
چکیده انگلیسی

Our aim is to explain instances in which the value of the logarithmic Mahler measure m(P)m(P) of a polynomial P∈Z[x,y]P∈Z[x,y] can be written in an unexpectedly neat manner. To this end we examine polynomials defining rational curves, which allows their zero-locus to be parametrized via x=f(t)x=f(t), y=g(t)y=g(t) for f,g∈C(t)f,g∈C(t). As an illustration of this phenomenon, we prove the equalityπm(y2+y(x+1)+x2+x+1)=2D(i)−34D(ω), where ω=e2πi/3ω=e2πi/3 and D(z)D(z) is the Bloch–Wigner dilogarithm. As we shall see, formulas of this sort are a consequence of the Galois descent property for Bloch groups. This principle enables one to explain why the arguments of the dilogarithm function depend only on the points where the rational curve defined by P   intersects the torus |x|=|y|=1|x|=|y|=1. In the process we also present a general method for computing the Mahler measure of any such polynomial.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 128, Issue 8, August 2008, Pages 2231–2250
نویسندگان
,