کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4595201 1335803 2007 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A simple (inductive) proof for the non-existence of 2-cycles of the 3x+1 problem
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
A simple (inductive) proof for the non-existence of 2-cycles of the 3x+1 problem
چکیده انگلیسی

A 2-cycle of the 3x+1 problem has two local odd minima x0 and x1 with xi=aiki2−1. Such a cycle exists if and only if an integer solution exists of a diophantine system of equations in the coefficients ai. We derive a numerical lower bound for a0⋅a1, based on Steiner's proof for the non-existence of 1-cycles. We derive an analytical expression for an upper bound for a0⋅a1 as a function of K and L (the number of odd and even numbers in the cycle). We apply a result of de Weger on linear logarithmic forms to show that these lower and upper bounds are contrary. The proof does not use exterior lower bounds for numbers in a cycle and for the cycle length.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 123, Issue 1, March 2007, Pages 10-17