کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4595221 1335804 2007 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Potentially good reduction of Barsotti–Tate groups
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Potentially good reduction of Barsotti–Tate groups
چکیده انگلیسی

Let R be a complete discrete valuation ring of mixed characteristic (0,p) with perfect residue field, K the fraction field of R. Suppose G is a Barsotti–Tate group (p-divisible group) defined over K which acquires good reduction over a finite extension K′ of K. We prove that there exists a constant c⩾2 which depends on the absolute ramification index e(K′/Qp) and the height of G such that G has good reduction over K if and only if G[pc] can be extended to a finite flat group scheme over R. For abelian varieties with potentially good reduction, this result generalizes Grothendieck's “p-adic Néron–Ogg–Shafarevich criterion” to finite level. We use methods that can be generalized to study semi-stable p-adic Galois representations with general Hodge–Tate weights, and in particular leads to a proof of a conjecture of Fontaine and gives a constant c as above that is independent of the height of G.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 126, Issue 2, October 2007, Pages 155-184