کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4595222 | 1335804 | 2007 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Rational functions over finite fields having continued fraction expansions with linear partial quotients
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let F be a finite field with q elements and let g be a polynomial in F[X] with positive degree less than or equal to q/2. We prove that there exists a polynomial f∈F[X], coprime to g and of degree less than g, such that all of the partial quotients in the continued fraction of g/f have degree 1. This result, bounding the size of the partial quotients, is related to a function field equivalent of Zaremba's conjecture and improves on a result of Blackburn [S.R. Blackburn, Orthogonal sequences of polynomials over arbitrary fields, J. Number Theory 6 (1998) 99–111]. If we further require g to be irreducible then we can loosen the degree restriction on g to deg(g)⩽q.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 126, Issue 2, October 2007, Pages 185-192
Journal: Journal of Number Theory - Volume 126, Issue 2, October 2007, Pages 185-192