کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4595242 1335805 2007 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nontrivial lower bounds for the least common multiple of some finite sequences of integers
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Nontrivial lower bounds for the least common multiple of some finite sequences of integers
چکیده انگلیسی

We present here a method which allows to derive a nontrivial lower bounds for the least common multiple of some finite sequences of integers. We obtain efficient lower bounds (which in a way are optimal) for the arithmetic progressions and lower bounds less efficient (but nontrivial) for quadratic sequences whose general term has the form un=an(n+t)+b with (a,t,b)∈Z3, a⩾5, t⩾0, gcd(a,b)=1. From this, we deduce for instance the lower bound: lcm{12+1,22+1,…,n2+1}⩾0,32n(1,442) (for all n⩾1). In the last part of this article, we study the integer lcm(n,n+1,…,n+k) (k∈N, n∈N∗). We show that it has a divisor dn,k simple in its dependence on n and k, and a multiple mn,k also simple in its dependence on n. In addition, we prove that both equalities: lcm(n,n+1,…,n+k)=dn,k and lcm(n,n+1,…,n+k)=mn,k hold for an infinitely many pairs (n,k).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 125, Issue 2, August 2007, Pages 393-411