کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4595247 1335805 2007 55 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computation of Weng's rank 2 zeta function over an algebraic number field
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Computation of Weng's rank 2 zeta function over an algebraic number field
چکیده انگلیسی

In this paper, we study the zeta function, named non-abelian zeta function, defined by Lin Weng. We can represent Weng's rank r zeta function of an algebraic number field F as the integration of the Eisenstein series over the moduli space of the semi-stable OF-lattices with rank r. For r=2, in the case of F=Q, Weng proved that it can be written by the Riemann zeta function, and Lagarias and Suzuki proved that it satisfies the Riemann hypothesis. These results were generalized by the author to imaginary quadratic fields and by Lin Weng to general number fields. This paper presents proofs of both these results. It derives a formula (first found by Weng) for Weng's rank 2 zeta functions for general number fields, and then proves the Riemann hypothesis holds for such zeta functions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 125, Issue 2, August 2007, Pages 473-527