کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4595280 1335806 2009 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Supersequences, rearrangements of sequences, and the spectrum of bases in additive number theory
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Supersequences, rearrangements of sequences, and the spectrum of bases in additive number theory
چکیده انگلیسی

The set of nonnegative integers is an asymptotic basis of order h if every sufficiently large integer can be represented as the sum of h elements of A. If an∼αnh for some real number α>0, then α is called an additive eigenvalue of order h. The additive spectrum of order h is the set N(h) consisting of all additive eigenvalues of order h. It is proved that there is a positive number ηh⩽1/h! such that N(h)=(0,ηh) or N(h)=(0,ηh]. The proof uses results about the construction of supersequences of sequences with prescribed asymptotic growth, and also about the asymptotics of rearrangements of infinite sequences. For example, it is proved that there does not exist a strictly increasing sequence of integers such that bn∼n2 and B contains a subsequence such that bnk∼k3.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 129, Issue 6, June 2009, Pages 1608-1621