کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4595300 1335807 2008 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stability of the local gamma factor in the unitary case
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Stability of the local gamma factor in the unitary case
چکیده انگلیسی

In [Stephen Rallis, David Soudry, Stability of the local gamma factor arising from the doubling method, Math. Ann. 333 (2) (2005) 291–313, MR2195117 (2006m:22026)], Rallis and Soudry prove the stability under twists by highly ramified characters of the local gamma factor arising from the doubling method, in the case of a symplectic group or orthogonal group G over a local non-archimedean field F of characteristic zero, and a representation π of G, which is not necessarily generic. This paper extends their arguments to show the stability in the case when G is a unitary group over a quadratic extension E of F, thereby completing the proof of the stability for classical groups. This stability property is important in Cogdell, Kim, Piatetski-Shapiro, and Shahidi's use of the converse theorem to prove the existence of a weak lift from automorphic, cuspidal, generic representations of G(A) to automorphic representations of GLn(A) for appropriate n, to which references are given in [Stephen Rallis, David Soudry, Stability of the local gamma factor arising from the doubling method, Math. Ann. 333 (2) (2005) 291–313, MR2195117 (2006m:22026)].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 128, Issue 5, May 2008, Pages 1358-1375