کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4595306 1335808 2007 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Continued fractions, special values of the double sine function, and Stark units over real quadratic fields
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Continued fractions, special values of the double sine function, and Stark units over real quadratic fields
چکیده انگلیسی

Let F be a real quadratic field and m an integral ideal of F. Two Stark units, εm,1 and εm,2, are conjectured to exist corresponding to the two different embeddings of F into R. We define new ray class invariants and associated to each class C+ of the narrow ray class group modulo m and dependent separately on the two different embeddings of F into R. These invariants are defined as a product of special values of the double sine function in a compact and canonical form using a continued fraction approach due to Zagier and Hayes. We prove that both Stark units εm,1 and εm,2, assuming they exist, can be expressed simultaneously and symmetrically in terms of and , thus giving a canonical expression for every existent Stark unit over F as a product of double sine function values. We prove that Stark units do exist as predicted in certain special cases.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Number Theory - Volume 124, Issue 2, June 2007, Pages 291-313